If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-9x^2+81=0
We add all the numbers together, and all the variables
-8x^2+81=0
a = -8; b = 0; c = +81;
Δ = b2-4ac
Δ = 02-4·(-8)·81
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*-8}=\frac{0-36\sqrt{2}}{-16} =-\frac{36\sqrt{2}}{-16} =-\frac{9\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*-8}=\frac{0+36\sqrt{2}}{-16} =\frac{36\sqrt{2}}{-16} =\frac{9\sqrt{2}}{-4} $
| 75+x+60=180 | | 5.2=-1.2+4y | | (√x)+(√x+15)-15=0 | | 16=v/10.24+8 | | 135+60+x=180 | | 135+60=x | | -0.04x^2+300=0 | | 5y-6=2y=+3 | | 10+8=x | | 9/m-13=14 | | 2x^2-10x÷8=0 | | m+43=7 | | 7+m=43 | | 6-y=120 | | y-6=120 | | 6y-6=120 | | 4+6=x0 | | A^4n2-1n=A^3n | | 2(z+1)-5(z-3)=5 | | 27=5+2n-2 | | 3(b-1)=18-5(b-1) | | 3x²-160x+1600=0 | | 5x-3=2(2x)= | | 3x²-160x=-1600 | | 3(x+2)=2(3x-2) | | (x-1)²=⁴/²⁵ | | 2(x-2)=+3+16 | | 8e+10=9e | | 12x-1+4=+9x-3 | | x²+14x=-13 | | 3t-2=2t+3 | | x²+10=7x |